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ON THE STEADY MOTION OF A CRACK WITH SLIP AND SEPARATION SECTIONS ALONG 
THE INTERFACE OF TWO ELASTIC MATERIALS* 

I.V. SIMONOV 

The pre-Rayleigh motion of a crack (slit) with a finite slip section 
adjoining the edge of the crack and a semi-infinite separation section 
along the line connecting two elastic materials is studied under the 
action of a moving load. The problem is first reduced to a Hilbert bound- 
ary value problem with three different singularities for a system of two 
analytic functions of a complex variable. Then, by using conformal mapping 
techniques, analytic continuation, and elimination of singularities it is 
reduced to a problem with two singularities that lends itself to splitting, 
and consequently, of solution in Cauchy-type integrals. The length of 
the slip section 2 is determined uniquely from additional physical 
conditions (no force of attraction on the slip section, and non-inter- 
section of the slit edges in the separation zone) formulated in the form 
of inequalities. For a concentrated load at a distance L from the edge 
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of the slit, the solution is obtained explicitly. 

It is show that l/L -0 if the elastic materials are similar in 

properties, and UL- 1 if the velocity of crack edge motion approaches 
the first of the Rayleigh velocities. When zdr<~(r is the distance 
from the edge), an intermediate asymptotic form identical with the 

asymptotic form Of the solution of an analogous problem without taking 

account of the slip zone /l/ exists. 

An oscillating singularity occurs on the interface of the elastic 
materials when the boundary conditions of the separation-adhesion type 
/2/ are replaced. This was apparently first found in /3/, then a number 
of authors examined the problem of cracks on an interface (see /4/, say). 

Analysis of local solutions shows that this undesirable singularity, 
from the physical viewpoint, (it indicates interpenetration of the edges) 
can be cancelled by the introduction of a slip section ahead of the 
separation point, since discontinuities in the boundary conditions of 
the separation-slip and slip-adhesion type generate non-oscillating 
singularities and, moreover, unlimited compressive stresses appear on the 
interface behind a transverse shear crack on approaching this edge. Such 
a scheme (without a proper foundation) was first examined in statics for 
a finite crack /5/, where the problem was reduced to a singular integral 
equation solved numerically. For a semi-infinite crack, the ambiguity of 
the solution of such a problem is indicated in /6/ (actually, no condition 

is found for selecting a unique root of the equation to determine 1). 
Slip sections were introduced for an analogous prupose much earlier for 

the impression of a stamp adhering to an elastic medium /7/. 

1. A semi-infinite crack moves at a velocity c over the interface of two elastic half- 
planes y>O (medium 1) and Y< 0 (medium 2). We associate 
a Cartesian coordinate system z = y,, y = y, with the slit 

ez I 

For Z> 0 (Y = 0) the half-planes are stuck 
together, for -Z(r (I) one material slips relative to the 
zE,'::IhL:t friction, and on the ra;,GfzLk ththio;li:s ) 'L 
edges do not interact (separation). 
caused by a stationary normal and tangential load applied 
symmetrically to the edges in the section q<z<z,< -1 

Fig.1 
(the coordinates r1 and r2 are given, while the quantity 1 
is to be determined). We shall study the stress %nl and 

velocity u,'fields (j, k,m = 1,2; the superscript j determines the medium) under the physical 

assumptions made about the crack geometry. The justification for these assumptions follows 

below and will include confirmation of natural additional conditions. 

Ne will formulate the boundary conditions of the problem for y = 0 

[u*J = IU”1 = 0, x> 0; la,,1 =I II&l = 0, u12J = 0, --1 < z < 0 (1.1) 

CT**’ = -u (z), Ullj = T (z), z < -1 (a (x) = 7 (x) = 0 
5 Fz Ix,, 221) 

x 
at2 < 0, -l<z<O, [U,]=-_t s [ua]dx>O, xc--l (1.2) 

4 

The square brackets denote a jump in the quantity on passing from medium 1 to medium 2, 

i, m = 1, 2, (U,, UJ is the displacement vector, and s (4, T (4 are Holder-continuous functions. 

The stresses and velocities in the steady subsonic mode in the problem of the dynamic 

theory of elasticity (plane strain) can be expressed in terms of analytic functions i:mJ bkj) 
of the complex variable Zkj by means of the formulas (representations close to the represent- 

ations of L.A. Galin /?/I 
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Here pj are the shear moduli, c,~ and ct, are the bulk expansion and shear wave velocities, 

and R, = Bljppj - fi;’ (Cnj are the single positive roots of the Rayleigh equation Zlj (c) = 0). 
On the interface z,j = z (y = 0) . 

(512J = Im X,j, aJ= ReXaj, U,j=,Re(bzjX~j+UjXzj} (1.4) 

uzj = -cIm {ajy.lj + b,~dzj), 2pjRj (aj, bmj) = (Blj&j - 

Bj. Pw (I - Bj)) 
We will seek a solution in the energy class of functions with everywhere finite displace- 

ments. Hence, the following estimates result (2 =5 + iY is an auxiliary variable): 

I&,,jl< /““‘;,,,, 1 z-zk* hnji<f$ z-oo 

z,2, 2%=-l (li, j, m=i,2:1 

(1.5) 

e>O, 

The continuity condition for the stresses u,zj on the whole axis Y ~0, that results from 
(1.1) is equivalent, taking account of (1.4) and (1.5), to the equations 

X1' (2) = -?i;" (Z) _= X1 (2),X,' (2) = Xz2 (z) E X, (z), Im z > 0 

which reduce the number of unknown complex functions to two, while the expressions for the 
velocity jumps take the form (Y = 0) 

M = cRe (qXl + dxz), lu,l = -cIm(dX1 + pX,} (1.6) 

d = a, - a,, P = h, + b,,, q = b,, + b,, 

The remaining conditions (1.1) in terms of the X, are boundary conditions of a Riemann- 
Hilbert problem /8/ 

ImX, = z(z), ReX, = -a(z), z< --I, ImX, = ImX, = 0, 
-l<x<O 

(1.7) 

qReX, + dReX, = 0, dImX, + pImX, = 0, z > 0 

It can be rewritten in the form of a Hilbert problem /9/ if a piecewise-holomorphic 
vector is introduced 

X = (X,, x2), Imz > 0; X (2) = (x,),Z,)), Imz c 0 
X+ = g (5) X- + G (z), G = 2 (ir (z), ---(I (2)) 

(1.8) 

x > 0 (S = de - pq) 

The superscripts plus or minus denote narrowing on the real axis from above or below. 
Because of (1.7), the vector X is analytic in a plane cut along the real axis t< -1 and 
z > 0. It satisfies the conjugate conditions (1.8) with constraints on the behaviour at 
the singularities (1.5). This generalized problem with three singular points is among the 
singular problems of a linear conjugate since the location of one singular point is not 
known in advance. Such problems occur in the theory of filtration where a general algorithm 
for finding the effective solution is developed /lo/. It consists of constructing expansions 
of functions (canonical local solutions firstly) in Laurent series in the neighbourhood of 
each of the singularities and relying substantially on the analytic theory of differential 
equations. 

2. Following /9, lo/, we analyse the local solutions. We let hAm (k = 1, 2; n = 1, 2, 3) 
denote the roots of the characteristic equations for the singularities 

det 11 gk_&kl- hE 11 =O, detIIgog?'-A.E 1) =0 (2.1) 

where E is the unit matrix, and h is a parameter. For problem (l-8), these roots are the 
following: 

h,, = a,, = 1, h,, = h,, = -1, & = 1L23-l = (d + l/E)/@ - I/w). 

For c < min (~1, cn2) z c* we have p>O, q>O, S<O, l/&>(dI, hence --00<&<h13<0. 
Furthermore, to be specific we consider d<O (if d>O, then medium 1 and medium 2 should 
be interchanged; the case d = 0 will be examined separately). We introduce the indices 

pkn =: (h)ik,)/(2ni), defined apart from integers. Because of (1.5), 
regular, there are no cases of multiple roots of (2.1), 

all the singular points are 
and then the principal parts of the 

Laurent series expansions of the canonical solutions Xkn are 
proportional to (I - rm)%m(k, m, n = 1,2) 

around the singular points 
and z*kr, respectively /9, lo/. The functions Xm 

can be represented in the form of linear combinations of pairs of functions Xkn around each 
singularity z = 2". We select the indices themselves by starting from the estimates (1.5) 
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pll = plr = 0, pzl = pz2 = --‘i,, p13 = ?jz3 = 3/9 - ia 

2na = In I., h = (v& - d)/(l/z t d) 

solution is thereby determined. 

(2.2) 

The branch of the 

3. The conformal mapping 

0 = (22 + 1 + 27/z@ + 0)/l (2 = (l/4)(0 + o-1 - 2)) (3.1) 

T/z (2 + 4+ = -1/z (2 + I)_, 5 F I-l, 01, 1/z (2 + 1)+ = 

T/z (2 + 4’, 2 E l-l, 0 [ 

transfers the z plane with the cuts indicated in Sect.1 inot the upper o half-plane. The 

points o = -1, 1 correspond to the points z = -1, 0, and the segment (--I <z< 0, y = 0) 
transfer into a unit semicircle in the 0 half-plane 

Fig.2 

To eliminate the singularities (poles) at the points o = &l , we introduce the new 

unknown functions 

Y, = l/z (w)(w + 1) Xl? iY, = l/‘qiT)(o + 1) & (3.2) 

1/E+ = --l/z-, x > 0, JG+ = 1/i-, 5 < 0 

Because of (2.2) and (3.1), the points o = f 1 will be ordinary points for the vector 

functions Y = (Y,, Y,). Furthermore, we again consider the vector Y piecewise-holomorphic, 

given in the whole 61 plane with a cut along the real axis (Yx (z) = -Y, (f), Ixn z < 0). The 

boundary values of Y satisfy the following conjugate conditions (0 = 5 + iv)' 

Y-+=DY-, g>O, Y+=Y-;2iL E<O (3.3) 

z 

I 

(t,(J),-- =J<E<--l 

(--TV% -1<5<0 
- 2dpi 

d2 + pq 

Problem (3.3) is already a problem with two singularities o = O,m- 

The matrix T = (tr,), t,, = t,, = 1, t,, = ft, = T if/q/p diagonalizes the matrix D 

A=T-‘DT= r f (h>1) 
/I /I 

From (3.3) we obtain a split conjugate problem whose index is zero /8/ for the new 

vector-function W = T-‘Y s (IV,, W,): 

W+ = ‘ZW-, E > 0, W+ = W- + 2iT-‘2, 5 < 0 (3.4! 

The single solution of (3.4) satisfying the necessary condition at Infinity (w = O(1), 

0 + m) can be written in the form /S/ 

p1 = & = 1 - ia, (WI’, W3’) = T-‘E 

(69, =‘exp (ialn 1 0 1 - a arg o), 0 -< arg 0 Q 2n) 

The vector 1 is expressed in terms of W by means of the formula 

As a result of calculating the product of the matrices and vectors and transforming the 

integral over the segment -1-c E ,<O to an Integral over the ray -co <E < -1 using the 
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symmetry properties of the functions, l.!e obtain the main result in the form 

(3.5) 

IV) = lol/PiQsin (aln 151) + rcos (aln I E I)1 (h,, h-I/Z) 
Hc2) = [aI/plqcos(aln 1 $,I- T sin (a ln I5 Ill 
h+ = ~‘/I& * ~-‘llo-ia 

@_, h, I/pip) 
- 1 0 = 0 (4, hi = E (5k) (k = 1, 2) 

The angular distribution of the desired functions around the point z = 0 and the in- 

tensity coefficients can be obtained from the asymptotic forms of this solution as Z-+0 
independently of the parameter 1 (see also /ll/) 

Analysis of the asymptotic forms of the solution in the neighbourhood of the point z = -1 
shows that that combination of symbols (~~~(5, 0) as 5--t -l+ 0 and IuJ as 2+--l-O 
corresponds to the singularity of the solution - (z + l)-'11 irrespective of the sign of the 
coefficient, so that it is impossible simultaneously to satisfy (locally) the inequalities 
(1.2), Hence, the deduction about the necessity to extinguish the contribution of the pole 
w = -1 to the solution follows. Equating the residue of the function X(~)at the point 

o=--1 to zero, we obtain an equation to determine 1 (it is identical for each of the vector 
components) 

xt 

1 [u(z) J/p/4 cos (a In 1 j 1) - t (5) sin (a In 15 I)] 1/m E-‘E dx = 0 
CI 

1E = 2.z + 1 - 21/z (x + L), 5’ = diidx = l-l 12 + (1 + lix)“* + (1 + l/x)+] 
The solution of this equation is not unique. Global confirmation of conditions (1.2) 

enables the unique root to be extracted. 
The subsequent reasoning is for the case of a concentrated load c = Z6(s + L), z = T6(x + 

L). The equation for 1 takes the form 

~/~Zcos(aIn/5~l)-Tsin(alnIE~l)=O (Er.=EG)) (3.6) 

Taking account of (3.6) and the assumption made regarding the sign of d, we obtain from 
the condition c,,$O and 0 = @J 

Tcos (aln 1 EL I) + l/xX sin (a In I EL I) = 1/T* + (p/q) 2’ (3.7) 

sin (aln I EL 1) > 0, 2 > 0 

Conversely, from (3.7) it follows that cS2< 0 for 0 = eie (0 < 0 < n). 
Taking (3.6) and (3.7) into account as well as the equation g'(L)= 4iL2/[1 (EL2- I)] we can 

write the final form of the solution (3.5) for the concentrated load 

zitL6L (qT*+ pZ*) 
I 

g-1/* (eiak +"-ia 

x= xI1/K(SL--o)(<L-O-') p-'l'(o'ah-o-'~ 
(3.8) 

The condition of non-intersection of the cut edges remains unverified (although it is 
satisfied only asymptotically as x+-Z - 0). On the basis of (1.2), (1.6) and (3.8), we 
can write 

[U,] = - dTh (- x - L) - 21 f J5 (q-y pw 

where h(s) is a 
does not change 
other (positive 

step function. 
sign, 

It can be shown that for O<alnj&l.<5~ the function 1(E) 
while [U,l> 0 within the interval E< E< -1 (--L<x< -1). For 

because 1 &~j> 1) values of alnl El, the root of (3.6), the function I(E) 
is sign-variable, i.e., the condition of "non-intersection" 
-x<L. 

is disturbed in the domain l< 
Hence, (while taking (3.7) into account T#O for 2 =O ), the selection of the 

single root of (3.6) follows 

lE~~=e~/~~ 1=4L I SLI/(I&LI + i)* 

y=min(Arctg [$I/?! >O} (Z#O) 
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y+ (T=O,Z#O) 

y = 0, 1 = L (Z = 0, T > 0), y = x '(2 = 0, T < 0) 

At the point t= --L the function [V,](Z) has a logarithmic singularity, with the excep- 
tion of the case C =O,T>O when it experiences a discontinuity of the first kind. The 
requirement [u,]>o is apparently not satisfied completely successfully for =<-_L, neither 
for any combinations of Z and T: it oscillates as Z- --03 , damps out and is sign-varying (for 
T=o.Z>o I and Z = 0,Tj 0 this can be proved). The first minimum (in the negative domain) 
is reached at the point --I= L*= I (eTnla i 1)/4. with the exception of the case T<o, I =O in 
which the function [U,] has a logarithmic singularity with a change in sign on passing through 
the point Z= -_L. However, the solution should be considered acceptable in cases when L,>L 
since t-he repulsion forces not taken into account in the formulation and which occur during 
interaction of the edges will be insignificant in magnitude in the first place, and located 
far from the edge of the slit in the second (a computation 
I: >O, T = 0 and T>O, I =0 yields the value L,=. 4.5~). By 
system of small forces acting on the cut edges for 24 -L, 

"non-intersection" condition completely in these cases. 

4. In a small neighbourhood of the cut edge (Iz 1((l) 
the cut is the following: 

%a' - K, (Zns)-'~*.- const.u,', ulai - urj = 

%zl - K1 (Zn 1 z I)-'" - d [ul]/(cS), z +-0 

for l/L= 0.5 in the typical cases 
introducing a certain additional 
it can be hoped to satisfy the 

the behaviour of the solution on 

0 (I), r-+ +o (4.1) 

K2 = -(I + l.)[@F + q’P)l(ZnhqL)1’l’ = -(p/d) K, 
As c-+0 (statics) these results, which are independent of 1, are in agreement with the 

solution /6/ for the scheme /5/, where the expressions for the static intensity coefficients 
K1 and K, are exact, while not asymptotically exact as lIL+O, as is indicated in /6/. 

Following /4/, we calculate the energy flux F per unit length of the cut edge: F= 
-cSK,*/(4p) (as is clarified, the singularity in the stress &a to the left of the cut edge 
induces no contribution to the quantity F). It equals the power developable by the load; 
there is no energy sink at the other singular points. The slip section remains plane since 
it follows from (1.4) and (1.7) that u%jazO. Near the separation point 

U&(X, 0) = 0 ((1 + #I.), s-+-I+0 (4.2) 

If 1<L, and moreover, a I? can be indicated such that ~<Iz[< L, then the inter- 
mediate asymptotic form holds. On the continuation of the crack for l<r< L (I< E<c & z 
4Lil) 

(4.3) 

For T = 0 we have a111 (4Lil) =: aln I EL I = n/Z, and (4.3) agrees with the corresponding 
asymptotic form of the solution of the problem of a crack without taking account of the slip 
zone /l/. Passing to the limit of the case of identical materials (pL1-+ p2, c,,,~-+c,~), we 
obtain a- 0, LIL-0 (2 >O). The domains in which the local asymptotic forms (4.1) and (4.2) 
act hence vanish ohile the intermediate asymptotic form goes over into the asymptotic form of 
the corresponding problem about a separation crack (if X = 0, then it is shear) in a homogen- 
eous plane. On the other hand, by allowing the medium 2 to tend to a rigid medium (and the 

parameters k, c12, cq2 to tend to infinity) for c = const, we find that the quantity l/L grows 

and reaches a maximum. This fact is in agreement with the following physical explanation of 
the appearance of a contact area with slip: materials experience different tension of the 
outer layers during bending, consequently, tangential forces also appear on the interface 
during the attempt to separate two elastic materials from each other, 

As the velocity of the edge approaches the Rayleigh value (c-c*) it can be seen that 
h-+oo, 1-L. Note that the quantities llL are of the order of 5 x 10-4 for T = 0 in statics. 
If c=cd, where cd is a root of the equation d(c)=O, then h = 1, a = 0, 1= 0, as in the 
case of identical materials (the behaviour of the solutions is also qualitatively identical). 
The root cd can exist in the velocity range being studied if b (I- 2~) < ~~(1 - 2%) and 
C * = Cal or ~~(1 - 2v,)> ~1 (I--'2v,) and C, = caz(vj are Poisson's ratios) . 
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ASYMPTOTICALLY PENDULUM-LIKE PIOTIONS OF THE HESS-APPEL'ROT GYROSCOPE* 

YU.P. VARKHALEV and G.V. GORR 

Asymptotically pendulum-like motions of a heavy rigid body whose centre of 
gravity lies on the perpendicular to the circular cross-section of the 
gyration ellipsoid (the Hess-Appel'rot gyroscope) is investigated. 
Lyapunov's theorem is used to show that the initial position and initial 
angular velocity of this gyroscope can also be chosen such; that its 
motion will tend asymptotically, as time increases without limit, to 
rotation about the horizontal axis. Since in this case the initial 
conditions do not satisfy the invariant Hess relation, it follows that the 
results described cannot be obtained by direct generalisation of /l/ 
where the asymptotically pendulum-like motions were obtained for the 
special case of the Hess solution by constructing the phase trajectories. 

Various examples of asymptotic motions in the classical problem of 
the motion of a heavy rigid body with a fixed point are shown in /l-5/. 

Let the centre of gravity of a heavy xiqid body with a fixed point lie CVI the perpend- 
icular to the circular cross-section of the gyration ellipsoid constructed at the fixed point. 
We attach to this body a special coordinate system, and write its equations of motion about 
the fixed point in dimensionless coordinates /6/ 

z' = --zz, y’ = (a - a2)zz f yz - Y* (1) 

I’ = -(a - a*)zy T 22 - y* + VI 

v’ = OZVl - 01Y*. VI’ = “Y* - O*Y, vl’ = olv - OY1 

o=az+y, 01 = “*Y i 2, lop = a$2 

where =', I, 2 are the components of the angular momentum vector, 0, WI, ma are the components 
of the angular velocity vector, ~,v~.v% are the components of the unit vector indicating the 
direction of the force of gravity, o, 0% are the dimensionless parameters characterisinq the 
ratios of the gyration tensor components, and a dot accompanying the variable denotes differ- 
entiation with respect to time. 

Equations (1) have the following first integrals: 
.I? + n* (y2 + 9) f 2zy - 2v = 2E 12) 
Y'+Yl=+Yp'=l, zv + yv, +N,= k 

We shall use the same variables accompanied by an asterisk to write the particular 
solution of cl), describing the motion of a body about the horizontal axis, and the values of 
the constants of the integrals (2) of this solution. Then the solution will have the form 
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